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ABSTRACT: This article introduces an ensemble clustering tool developed at the Weather Prediction Center (WPC) to
assist forecasters in the preparation of medium-range (3–7 day) forecasts. Effectively incorporating ensemble data into an
operational forecasting process, like that used at WPC, can be challenging given time constraints and data infrastructure
limitations. Often forecasters do not have time to view the large number of constituent members of an ensemble forecast,
so they settle for viewing the ensemble’s mean and spread. This ignores the useful information about forecast uncertainty
and the range of possible forecast outcomes that an ensemble forecast can provide. Ensemble clustering could be a solution
to this problem as it can reduce a large ensemble forecast down to the most prevalent forecast scenarios. Forecasters can
then quickly view these ensemble clusters to better understand and communicate forecast uncertainty and the range of pos-
sible forecast outcomes. The ensemble clustering tool developed at WPC is a variation of fuzzy clustering where operation-
ally available ensemble members with similar 500-hPa geopotential height forecasts are grouped into four clusters. A
representative case from 15 February 2021 is presented to demonstrate the clustering methodology and the overall utility
of this new ensemble clustering tool. Cumulative verification statistics show that one of the four forecast scenarios identi-
fied by this ensemble clustering tool routinely outperforms all the available ensemble mean and deterministic forecasts.

SIGNIFICANCE STATEMENT: Ensemble forecasts could be used more effectively in medium-range (3–7 day)
forecasting. Currently, the onus is put on forecasters to view and synthesize all of the data contained in an ensemble
forecast. This is a task they often do not have time to adequately execute. This work proposes a solution to this prob-
lem. An automated tool was developed that would split the available ensemble members into four groups of broadly
similar members. These groups were presented to forecasters as four potential forecast outcomes. Forecasters felt this
tool helped them to better incorporate ensemble forecasts into their forecast process. Verification shows that presenting
ensemble forecasts in this manner is an improvement on currently used ensemble forecast visualization techniques.

KEYWORDS: Empirical orthogonal functions; Ensembles; Forecasting techniques; Numerical weather prediction/forecasting;
Operational forecasting

1. Introduction

Advances in computational resources have allowed most
global Numerical Weather Prediction (NWP) centers to pro-
duce ensemble forecasts. Due to the chaotic nature of the at-
mosphere and the amplification of initial condition errors with
time, ensemble forecasts are indispensable in the creation of
medium-range (3–7 day) forecasts. This is because ensemble
forecasts give the best approximation of the entire range of
possible forecast outcomes. At the National Centers for Envi-
ronmental Prediction’s (NCEP’s) Weather Prediction Center
(WPC), global ensemble forecasts from NCEP, the European
Centre for Medium-Range Weather Forecasts (ECMWF),

and the Canadian Meteorological Centre (CMC) are routinely
consulted in the preparation of medium-range forecasts. Each
EPS alone does not have enough spread to sufficiently simu-
late the true range of possible forecast outcomes (Buizza et al.
2005), so the available EPSs are routinely combined to form a
multimodel ensemble.

Forecasters working under strict time constraints do not nec-
essarily have time to thoroughly interrogate and investigate the
wealth of information contained in this multimodel ensemble.
Traditionally, forecasters have used multimodel ensemble fore-
casts by viewing the ensemble mean and spread (standard devi-
ation) or by viewing spaghetti plots (described by Inness and
Dorling 2012) that show the forecasted location of a given me-
teorological parameter contour (e.g., the 5800-m contour of
500-hPa geopotential height) for each ensemble member. This
gives a forecaster a quick approximation of the uncertainty of
the forecast and a cursory idea of the range of possible forecast
outcomes, but a host of useful information is ignored. To allevi-
ate the data overload problem, the National Weather Service
(NWS) has developed the National Blend of Models (NBM;
Craven et al. 2020). The NBM intelligently postprocesses and
combines deterministic and ensemble forecasts to create one
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consistent and accurate forecast for use as a common starting
point across the NWS. This is essential for consistent messaging
across NWS organizations concerning high-impact weather
events. However, forecasters have expressed concerns about
solely relying on the NBM. Forecasters want tools that will
show them the underlying data the NBM used to arrive at its
forecast as well as plausible alternatives to the NBM forecast.
This is especially needed for medium-range forecasts where
there is still significant forecast uncertainty. Thus, a tool that al-
lows forecasters to efficiently and objectively get a more detailed
view of the most prevalent forecast scenarios contained in the
multimodel ensemble forecasts that are incorporated into the
NBM is needed and would greatly enhance the forecast process.

A tool that could accomplish these goals is an ensemble clus-
tering tool. Ensemble clustering is a well-established method of
grouping ensemble members with similar forecasts together,
thereby reducing a large set of ensemble forecasts down into
the most prevalent forecast scenarios. Different methods of en-
semble clustering have been used successfully to address various
operational forecasting challenges. In the short range (1–3-day
forecasts), Johnson et al. (2011) used a hierarchical cluster anal-
ysis on a convection-allowing model to show different forecast
scenarios for short-range precipitation events. In the medium
range (4–10-day forecasts), Ferranti and Corti (2011) use empir-
ical orthogonal functions (EOFs) and the k-means clustering al-
gorithm to cluster medium-range forecasts over Europe from
the ECMWF Ensemble (ENS). Last, in the subseasonal range
(10–30-day forecasts), Palmer et al. (1990) used EOF analysis
and a Ward hierarchical clustering algorithm on ECMWF ENS
forecasts to produce different 10–30-day forecast scenarios over
the Northern Hemisphere, noting that one of the clusters usu-
ally had a more accurate forecast than the ensemble mean
forecast.

WPC’s own most recent development work on the topic of
ensemble clustering is documented in Brill et al. (2015). Brill
et al. (2015) developed a divisive clustering method that applied
a one-dimensional discrete Fourier transformation to ensemble
member deviations from the ensemble mean 500-hPa geopoten-
tial heights in a truncated zonal band over North America. Brill
et al. (2015) applied this clustering method to a combination of
the NCEP Global Ensemble Forecast System (GEFS) and the
ECMWF ENS. WPC medium-range forecasters found these
cluster forecasts plausible and of value to their forecast process.
However, the largest clusters produced by this method were not
able to consistently outperform the ECMWF ENS mean.
In addition, this method reduces the geopotential data to
one dimension, potentially ignoring important information
about two-dimensional forecast variability. Thus, a cluster-
ing algorithm that can produce cluster forecasts of compa-
rable accuracy to the available EPS means and takes into
account two-dimensional variability is desired.

An ensemble clustering methodology that could satisfy
these desired requirements is EOF analysis in conjunction
with fuzzy k-means cluster analysis, hereafter referred to as
ensemble fuzzy clustering (EFC). EFC was developed by Harr
et al. (2008) who used the technique on ensemble forecasts of
western Pacific typhoons undergoing extratropical transition to
learn what factors drive the predictability of the extratropical

transition process. More recently, Zheng et al. (2017) has used
EFC to determine forecast scenarios for high-impact U.S. East
Coast winter storms from a large multimodel ensemble. The
authors of Zheng et al. (2017) made a version of their EFC
product available for testing in WPC’s Winter Weather Experi-
ment (WWE) during the 2017/18 winter season. WWE partici-
pants were intrigued by this tool and its potential to assist the
forecast process. When WPC launched its Extended Range
Forecast Experiment (ERFE) in 2017, WPC developers set out
to develop an ensemble clustering tool that could reveal the
most prevalent medium-range (3–7 day) forecast scenarios of
temperature and precipitation over the contiguous United
States (CONUS) and could serve as a prototype for the needed
and desired complement to the NBM. Development of this tool
began in 2017 and it has been refined through testing during
ERFE sessions. Over time, the use of the tool has spread from
WPC to forecasters throughout the NWS. This paper details
WPC’s EFC tool which is geared toward forecasting tempera-
ture and precipitation over the CONUS during days 3–7 and
demonstrates its utility through a case study.

The remainder of this paper proceeds as follows. Section 2
discusses the datasets and details the ensemble clustering meth-
odology. Section 3 provides a case study that demonstrates
the utility of WPC’s EFC tool for creating medium-range
forecasts. Statistical verification of the cluster forecasts is
presented in section 4. Section 5 provides a summary and
key conclusions.

2. Data and methodology

a. Data

The ensemble data used in this study are 0.58 resolution
versions of the CMC Global Ensemble Prediction System
(GEPS; 20 members; Lin et al. 2019), the NCEP GEFS
(30 members; Zhou et al. 2022), and the ECMWF ENS
(50 members; ECMWF 2021). These data were used because
they are what is available to forecasters at WPC to consult in
their preparation of medium-range forecasts. These three en-
semble prediction systems (EPSs) also make up the bulk of
the data the NBM combines to create 3–7-day forecasts. The
NBM applies a postprocessing technique (Hamill et al. 2017)
to these 0.58 resolution ensemble member forecasts of several
surface-based variables, including maximum temperature
(TMAX), minimum temperature (TMIN), and precipitation
(QPF). This is done to improve their accuracy and fine-scale
detail. To be a true compliment to the NBM, our EFC tool
would have used these postprocessed forecasts. However, at
the time of development, they were not available so we used
the available raw versions. The multimodel ensemble com-
prised of these three global EPSs contains 100 members and
should reasonably include most possible forecast outcomes.
The scope of ERFE was limited to creating experimental fore-
casts for 500-hPa geopotential height (Z500), TMAX, TMIN,
and QPF. Consequently, these are the only ensemble forecast
parameters used in our prototype ensemble clustering tool.
These data were accessed and available in real-time at NCEP but
may be downloaded from ECMWF’s THORPEX Interactive
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Grand Global Ensemble (TIGGE; Bougeault et al. 2010; Buizza
2014; Swinbank et al. 2016) archive.

b. EOF analysis

The first step of the EFC methodology demonstrated by
Harr et al. (2008), and modified for use in this study, is to per-
form EOF analysis on an ensemble forecast parameter of in-
terest. EOF analysis is a common data analysis technique
used in climatological studies to determine the spatial patterns
that most efficiently explain the variability of a multivariate
dataset with time (Richman 1986). EOF analysis can be calcu-
lated across the model ensemble member dimension instead
of the more common time dimension. In this case, the result-
ing modes of the EOF analysis will show the dominant pat-
terns of the difference between individual ensemble members
and the ensemble mean. The leading principal components
(PCs) derived from this type of EOF analysis represent the
projections of the dominant EOF patterns onto the difference
between each of the ensemble members and the mean of all
ensemble members. The EOF patterns together with the PC
values for each ensemble member will efficiently detail the
dominant two-dimensional modes of variability in the ensem-
ble forecast and how a given ensemble member’s forecast dif-
fers from the mean of all ensemble members. Accordingly, a
clustering algorithm can be applied to the PCs to group to-
gether members that have similar forecasts for the parameter
of interest. As in Harr et al. (2008) and Zheng et al. (2017),
each PC is normalized to have a variance of 1, and only the first
two leading EOFs and their attendant PCs are considered.

The most important part of EFC is selecting the proper
forecast variable and domain on which to perform the EOF
analysis. What variable and domain is proper is dictated by
the end goal of EFC. The goal of this study is to objectively
create forecast scenarios of temperature and precipitation
over regions of the CONUS for each day of the 3–7-day fore-
cast period. This requires performing EOF analysis on a single
variable contained in the ensemble forecasts that will suc-
cinctly capture and efficiently describe what the weather will
be like on a given day. A variable we felt satisfies these re-
quirements and is familiar to forecasters is Z500. The Z500
pattern usually governs the location of the storm track (areas
of high precipitation) as well as areas of anomalous TMIN and
TMAX. Thus, Z500 is one variable that will give a forecaster
some information about the TMIN, TMAX, and QPF forecast.
For our ensemble clustering tool, ensemble clusters for a given
day were derived from EOF analysis of the 24-h-averaged
Z500 field spanning that day. Sets of clusters were provided
for a CONUS-wide domain as well as three predefined regions
of CONUS (east, west, and central). The boundaries for the
domains over which the EOF analysis is conducted are listed
in Table 1.

c. Cluster analysis

The second step of EFC is applying the fuzzy k-means clus-
tering algorithm to the EOF PCs to group ensemble members
with similar forecasts together. Traditional k-means clustering
(Lloyd 1982) is a popular and widely used method of clustering

data points. In traditional k-means clustering, each data point is
assigned to only one cluster. In fuzzy k-means clustering, each
data point can belong to more than one cluster. Each data point
is assigned a membership coefficient for each cluster that de-
scribes the degree to which it belongs to that cluster. This infor-
mation can be used to create more nuanced clusters. Harr et al.
(2008) used the membership coefficient to leave ensemble
members on the border between two clusters unclassified.
Alternatively, Zheng et al. (2017) assigned each ensemble
member to the cluster for which it had the highest membership
coefficient. This effectively creates a clustering scheme that is
likely identical to traditional k-means clustering. For our en-
semble clustering tool, traditional k-means clustering was uti-
lized as potentially excluding large numbers of ensemble
members from classification was not desired. However, exclud-
ing large outliers from classification was desired, so ensemble
members with at least one normalized PC of greater than 3.5 were
filtered out before applying the k-means clustering algorithm. In
practice, most of the time no ensemble members are filtered out
before applying the k-means clustering algorithm.

As detailed in Zheng et al. (2017), the steps of the k-means
clustering algorithm are as follows:

1) place a predefined number of clusters (initial guess) in the
EOF PC1–PC2 phase space,

2) assign each ensemble member represented by its pair of
PCs to the nearest group center,

3) compute new centers by minimizing an objective function
that evaluates the distance from each point to each new
cluster,

4) reexamine each point relative to the updated cluster cen-
ters, and

5) repeat steps 2–4. If no points can be reassigned because
they lie closer to another center, the iterations stop.

In practice, steps 2–4 are usually repeated less than 15
times. The other critical aspect of both fuzzy and traditional
k-means clustering is deciding the number of predefined clus-
ters. As detailed in Harr et al. (2008), objectively determining
the optimal number of clusters is very difficult and is often im-
material. The goal of ensemble clustering in this application,
as in Harr et al. (2008) and Zheng et al. (2017), is to partition
the data into an adequate subdivision of similar groups.
Harr et al. (2008) took a subjective approach to determining
the adequate number of clusters. Zheng et al. (2017) took an
objective approach and used the Rand index (Yeung and
Ruzzo 2001) to determine the optimal number of clusters,
finding that the optimal number of clusters was often 3–5.
Subjectively determining the optimal number of clusters was
not an option as our tool would be automated. For simplicity,

TABLE 1. EOF domains.

Domain name Domain area

CONUS 228–728N, 408–1558W
EAST 258–558N, 608–1008W
CENTRAL 258–558N, 758–1158W
WEST 258–558N, 958–1358W
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we decided to keep the number of clusters fixed at four clus-
ters, the middle of the optimal range found by Zheng et al.
(2017). However, this decision may need to be revisited as
some users have voiced a preference for the number of clus-
ters to vary.

d. Cluster display

WPC forecasters and other end users were provided with
a simple website to view the clusters. For each day in the
3–7-day forecast period and for each region, this website dis-
played the two leading 24-h-averaged Z500 EOFs and a phase
space that showed each ensemble member’s PC values and to
which cluster it belonged. The website also displayed cluster
mean forecasts for 24-h-averaged Z500, daily TMAX, daily
TMIN, and 24-h QPF. Cluster mean forecasts were displayed
as the difference between the cluster mean and the multimo-
del mean of all 100 ensemble members. This was done so that
forecasters could quickly see how each cluster was different
from the multimodel ensemble mean. The cluster forecasts
were presented to participants in the order of their ranked
size (i.e., cluster 1 was comprised of the largest number of

ensemble members). The utility of the WPC clustering tool
will now be demonstrated through a case study.

3. 15 February 2021 eastern U.S. case

February of 2021 was an active weather month over the
central and eastern United States. The middle of the month
was particularly active with the region being impacted by a
notable cold air outbreak and several impactful precipitation
events. The 15 February 2021 case is in the middle of this ac-
tive period and will be used to demonstrate the utility of
WPC’s EFC tool as a means to better understand the range of
possible forecast outcomes.

a. Synoptic overview and verifying analyses

Before discussing the ensemble clustering output, a brief
overview of the verifying analyses for the parameters of in-
terest (Z500, QPF, TMIN, and TMAX) is presented. The
24-h-averaged Z500 analysis ending at 0000 UTC 16 February
from the GFS (Fig. 1a) shows a closed 500-hPa low centered
over James Bay in Canada. Troughing extends southwestward

FIG. 1. (a) GFS analysis 24-h-averaged Z500 (gray contours; m) and standardized anomalies (shading; s) with respect to CFSR climatol-
ogy ending at 0000 UTC 16 Feb 2021. (b) CCPA 24-h precipitation (shading; mm) ending at 0000 UTC 16 Feb 2021. (c) Lowest
ERA5 2-m temperature between 0000 and 1200 UTC 15 Feb 2021 (shading; 8C). (d) Highest ERA5 2-m temperature between
1200 UTC 15 Feb 2021 and 0000 UTC 16 Feb 2021 (shading; 8C).
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and then southward from this feature over the central United
States, with the most anomalous troughing located over Texas.
Downstream from the trough, there is an expansive ridge over
the east coast of the United States and the western Atlantic
Ocean. Between the central United States trough and down-
stream ridge, a strong front is draped from the lower Missis-
sippi Valley to the Tennessee Valley. Morning TMINs from
ECMWF’s ERA5 dataset (Hersbach et al. 2020) were as low
as 2158C in western Tennessee and as high as 58C in eastern
Tennessee (Fig. 1c). Afternoon TMAXs stayed below 27.58C
in western Tennessee and surged above 158C in eastern Ten-
nessee (Fig. 1d). According to The Environmental Modeling
Center’s Climatology-Calibrated Precipitation Analysis (CCPA)
dataset (Hou et al. 2014), areas along this front experienced
heavy precipitation of up to 35 mm (Fig. 1b) with some of this
precipitation falling as snow, sleet, and freezing rain. Overall, this
was a high-impact weather day for the central and eastern United
States.

b. Ensemble forecasts at different lead times

Figure 2 shows the multimodel ensemble mean 24-h-averaged
Z500 forecast and verifying analysis for this case at different lead
times. The 7-day multimodel ensemble mean forecast (Fig. 2a)
was poor and featured weak toughing over the eastern United
States and the western Atlantic Ocean where ridging occurred.
Over the central United States, the 7-day multimodel ensemble
mean forecast has weak ridging where troughing occurred. This
serves to highlight the perils of only using an ensemble mean
forecast. By 5 days prior to the event, the multimodel ensemble
mean forecast had improved (Fig. 2b). The multimodel mean
24-h-averaged Z500 field is relatively zonal and does not ade-
quately depict the magnitude of troughing over the central
United States or ridging over the eastern United States and
western Atlantic that occurred, but it no longer forecasts trough-
ing where a ridge verified and ridging where are trough verified.
The 3-day multimodel ensemble mean forecast (Fig. 2c) showed
further improvement. While the amplitude of the 24-h-averaged
Z500 features was underdone, the forecast had the central U.S.
trough and the eastern U.S. ridge in the right locations. The fol-
lowing subsections will focus on the application of WPC’s EFC
methodology to the 7- and 5-day ensemble forecasts for this
high-impact event.

c. 7-day ensemble clustering forecast output

Figure 3a shows the 7-day multimodel mean and spread
forecast for the 24-h-averaged Z500 field initialized at
0000 UTC 8 February 2021. As previously noted, this forecast
was poor. However, the ensemble spread in 24-h-averaged
Z500 is greatest over eastern Canada and the northeastern
United States. This suggests that the ensembles contain a wide
range of forecast solutions, with perhaps some individual solu-
tions being more accurate than the multimodel mean. A tradi-
tional spaghetti plot of the 24-h-averaged Z500 is shown in
Fig. 3b, but like most spaghetti charts, it is difficult to interpret
and useful patterns are hard to determine.

The first step of our ensemble clustering methodology is to
evaluate the first two EOF patterns for the 7-day 24-h-averaged
Z500 field over the EAST domain defined in Table 1. Figures 3c
and 3d show these first two leading EOFs, which explain 50.6%
and 27.3% of the variance in the 24-h-averaged Z500 field, re-
spectively. The first EOF (EOF1; Fig. 3c) is a monopole pattern
with positive values collocated with the weak multimodel ensem-
ble mean troughing over the northeastern United States. Thus,
members with positive (negative) PCs for EOF1 have higher
(lower) heights and stronger ridging (troughing) in this area.
Meanwhile, the second leading EOF (EOF2; Fig. 3d) is a dipole
with negative values over the Upper Midwest and Ontario and
positive values centered just south of Nova Scotia. This indicates
that members with positive (negative) PCs for EOF2 have in-
creased troughing (ridging) when compared to the multimodel
ensemble mean over the Upper Midwest and Ontario and in-
creased ridging (troughing) when compared to the multimodel
ensemble mean over Atlantic Canada.

Figure 4 shows the partition of the 100 multimodel ensem-
ble members into the four clusters as determined by the clus-
tering method. The 39 members that comprise cluster 1 are
generally in the lower right quadrant of the phase space, with
positive values for PC1 and negative values for PC2. Accord-
ingly, cluster 1 contains the ensemble members that have
more ridging over the central and eastern United States and
troughing over Atlantic Canada. The 32 members that com-
prise cluster 2 are located on the left side of the phase space,
with negative values for PC1. Thus, cluster 2 contains the en-
semble members that have enhanced troughing over the east-
ern United States. The 23 ensemble members that comprise

FIG. 2. 24-h-averaged Z500 verifying analysis (gray contours; m) and multimodel ensemble mean (black contours; m) from ensemble
forecast initialized at (a) 0000 UTC 8 Feb 2021 (7-day forecast), (b) 0000 UTC 10 Feb 2021 (5-day forecast), and (c) 0000 UTC 12 Feb
2021 (3-day forecast) and valid at 0000 UTC 16 Feb 2021.
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cluster 3 are in the upper right quadrant of the phase space.
These members have positive values for PC1 and PC2. Thus,
cluster 3 contains the ensemble members with enhanced
troughing over the central United States and enhanced ridging
over the eastern United States, Quebec, and Atlantic Canada.
Last, the 6 members that comprise cluster 4 are located in the
upper portion of the PC1–PC2 phase space. These ensemble
members have large positive values for PC2 and represent the
ensemble members with the strongest troughing over the cen-
tral and eastern United States and the strongest ridging over
Atlantic Canada.

The phase space shown in Fig. 4 is exactly as it would have
looked in real time to ERFE participants, with one notable
exception. The magenta cross in Fig. 4 shows the position of
the GFS analysis 24-h-averaged Z500 field over the EAST do-
main in the PC1–PC2 framework. The verification presented
in the PC1–PC2 framework is located far from the multimodel
ensemble mean, which, by definition, is located at the origin
of the PC1–PC2 phase space. It is also located far from the
mean of each EPS (filled circles). However, it is located on
the outer edge of the group of members that forms cluster 3,
indicating that this cluster had the most accurate forecast for

FIG. 3. (a) 24-h-averaged Z500 multimodel ensemble mean (contours; m) and spread (shading; m) initialized at 0000 UTC 8 Feb 2021
and valid for the 24-h period ending at 0000 UTC 16 Feb 2021. (b) Spaghetti plot of 5460-m 24-h-averaged Z500 contour for the 100 multi-
model ensemble members (GEPS ensemble members in red, GEFS members in green, and ENS members in blue). (c) The regressed pat-
tern of 24-h-averaged Z500 corresponding to EOF PC1 (shading; m) and multimodel ensemble mean 24-h-averaged Z500 (contours, m)
ending at 0000 UTC 16 Feb 2021. (d) As in (c), but for the EOF2 pattern.
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this case. The members that comprise cluster 4 are also rela-
tively close to the verification location, indicating that mem-
bers in cluster 4 also had relatively good forecasts. This could
not have been known in advance, but it demonstrates how the
multimodel ensemble mean and the mean of each EPS does
not always adequately reflect the range of possible forecast
outcomes. Further, it demonstrates how clustering ensemble
members with similar forecasts can do a better job of accom-
plishing this goal.

Determining the physical interpretation of each cluster
from the EOFs and the PC1–PC2 phase space can be tricky
for those who are unfamiliar with EOF analysis. But, the en-
semble clustering tool can be effectively used without viewing
the EOFs or the PC1–PC2 phase space. The physical interpre-
tation of each cluster will become apparent when the forecasts
from each cluster are viewed. Figure 5 shows the mean fore-
cast for 24-h-averaged Z500 for the members that comprise
each cluster (cluster mean) and how they differ from the mul-
timodel ensemble mean. Unlike during ERFE sessions, Fig. 5
includes the verifying analysis so that the reader can get a bet-
ter sense of the relative accuracy of each cluster forecast.
Each EPS mean forecast is also included so that the reader
may see how the cluster means compare to the EPS means
and if they offer any value over viewing just the EPS means,
as is traditionally done in operational forecasting. Indeed, the
physical interpretation of each cluster forecast and how it dif-
fers from the multimodel ensemble mean becomes obvious

when the cluster forecasts are viewed in this manner. For ex-
ample, it is clear that cluster 1 (Fig. 5c) is the forecast scenario
with enhanced ridging over the central and eastern United
States and enhanced troughing over Atlantic Canada.

Figure 5a shows the multimodel ensemble mean and spread
forecast, with Fig. 5b showing the verifying analysis and how it
differs from the multimodel ensemble mean. Together, Figs. 5a
and 5b show that the multimodel ensemble mean drastically
underforecast the strength of the troughing extending south
from James Bay and forecasted a trough over Atlantic Canada
and the northeastern United States where ridging was ob-
served. In addition to the visual verification provided by
Fig. 5, the anomaly correlation (AC) over the EAST do-
main for the multimodel ensemble mean forecast, cluster
mean forecasts, and EPS mean forecasts were evaluated
and are provided in Table 2. These AC values are centered
ACs [described by Wilks (2006, p. 311)] based on climato-
logical means and standard deviations derived from the
0.58 NCEP Climate Forecast System Reanalysis (CFSR) dataset
(Saha et al. 2010) for a 30-yr period (1980–2010). The verifying
analysis is the GFS analysis that is available on the same 0.58
grid as the ensemble data. The 24-h-averaged Z500 AC of
0.11 for the multimodel mean is poor for a 7-day forecast.
However, it is better than the forecasts predicted by clusters
1 and 2 (Figs. 5c,d). Cluster 2 in particular had a poor forecast
(AC of 20.33) because it forecast a trough over the eastern
United States and Atlantic Canada where the verifying analysis
had a ridge. By contrast, clusters 3 and 4 (Figs. 5e,f) had relatively
good forecasts. Both forecasts correctly predicted enhanced
troughing relative to the multimodel ensemble mean from James
Bay southwestward and enhanced ridging over the eastern
United States and Atlantic Canada. Cluster 3 correctly predicted
these features would be located slightly further west than cluster
4, resulting in cluster 3 having a better forecast than all other clus-
ter or EPS means.

Clustering ensemble members that have similar forecasts
together inevitably produces clusters with a wide range of
forecast accuracy. The most frequent question we received
from ERFE forecast session participants focused on how they
could identify which cluster forecast would be most accurate.
We stressed to participants that selecting the most accurate
cluster was beside the point. This tool aims to help forecasters
better understand and communicate the range of possible fore-
cast outcomes contained in the global ensembles. Currently, in
operational forecasting, the GEPS, GEFS, and ENS means are
often treated as de facto ensemble clusters. However, they of-
ten do not adequately represent the range of possible forecast
outcomes. That was precisely the case for this event. The visual
verification presented in Fig. 5 shows that the ensemble means
for the GEPS (Fig. 5g), GEFS (Fig. 5h), and ECMWF ENS
(Fig. 5i) were less different from the multimodel ensemble mean
than the mean of each cluster was from the multimodel ensem-
ble mean. This case illustrates how the EFC methodology we
propose can effectively identify and visualize the different fore-
cast outcomes contained in the global ensemble forecasts.

In addition to producing experimental forecasts for Z500,
ERFE was tasked with creating experimental forecasts for
TMAX, TMIN, and QPF. To assist participants in the preparation

FIG. 4. The PC1–PC2 phase space with the location of each en-
semble member and the cluster it belongs to for the 7-day forecast
initialized at 0000 UTC 8 Feb 2021 and valid for the 24-h period
ending at 0000 UTC 16 Feb 2021. Members in cluster 1 are labeled
with “1”, members in cluster 2 with “2,” members in cluster 3 with
“3,” and members in cluster 4 with “4.” The larger filled circles de-
note the location of the three EPS means. By definition, the multi-
model ensemble mean is located at the origin. Ensemble members
in red are GEPS members, members in green are GEFS members,
and members in blue are ENS members.
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of these forecasts, the TMAX, TMIN, and 24-h QPF cluster
mean forecasts from the clusters derived from the 24-h-averaged
Z500 EOF analysis were presented. We were unsure if clusters
based on Z500 would create useful forecasts for variables other
than Z500. More rigorous verification of the cluster forecasts
over a 6-month period that will answer this question will be
shown in section 4, but for this case, the cluster forecasts based
on the 24-h-averaged Z500 EOF analysis did produce useful
forecasts for TMIN, TMAX, and 24-h QPF. Similar to Fig. 5,
the multimodel mean, cluster means, and individual EPS means
for TMAX and 24-h QPF for this case are shown in Figs. 6 and 7,
respectively.

The verifying TMAX analysis (Fig. 6b) shows much warmer
TMAXs than the multimodel ensemble mean out ahead of the
cold front over the eastern United States and much colder
TMAXs behind the front over the central United States. This
is not surprising as the verifying 24-h-averaged Z500 analysis
(Fig. 5b) had stronger ridging over the eastern United States
and stronger troughing over the central United States than the
multimodel ensemble mean. It is also clear from the TMAX
verification that cluster 3 (Fig. 6e) had the most accurate fore-
cast for TMAX, with cluster 4 not far behind (Fig. 6f). Both
clusters correctly predicted warmer TMAXs than the multi-
model ensemble mean ahead of the front over the eastern

FIG. 5. (a) Multimodel ensemble mean (contours) and spread (shading) for 24-h-averaged Z500 initialized at 0000 UTC 8 Feb 2021
and valid at 0000 UTC 16 Feb 2021. The numbers on top of each panel indicated how many ensemble members from each EPS are in-
cluded in that panel’s mean forecast, “C” before the number of CMC GEPS ensemble members, “G” before the number of GEFS mem-
bers, “E” before the number of ECWMF ENS members, and “T” before the total number of ensemble members. (b) GFS analysis of
24-h-averaged Z500 (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021. (c)–(i) Cluster
or EPS mean 24-h-averaged Z500 (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021.

WEATHER AND FORECAS T ING VOLUME 38546

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:18 PM UTC



United States and colder TMAXs behind the front. Though,
for both clusters 3 and 4, their exact location of the front is
slightly off. Cluster 3 is too far west with the front placement,
and cluster 4 is too far east. This is consistent with each clus-
ter’s 24-h-averaged Z500 forecast. Overall, the TMAX fore-
casts from the clusters based on the 24-h-averaged Z500 EOF
analysis for this case make sense physically and participants
found them useful.

The verifying 24-h precipitation analysis (Fig. 7b) featured
higher precipitation amounts over much of the central and east-
ern United States than the multimodel ensemble mean pre-
dicted for this case. It is also clear from the 24-h precipitation
verification that cluster 3 (Fig. 7e) had the most accurate fore-
casts for 24-h precipitation. Cluster 3 correctly predicted higher
24-h precipitation amounts than the multimodel ensemble
mean over the central and eastern United States. In contrast,
cluster 2 (Fig. 7d), which had one of the poorest 24-h-averaged
Z500 forecasts, also had one of the poorest 24-h precipitation
forecasts. Cluster 2 predicted less precipitation over the central
and eastern United States than the multimodel ensemble mean
when more precipitation than the multimodel ensemble mean
forecast is what verified. As with the TMAX forecasts from
the clusters based on the 24-h-averaged Z500 EOF analysis,
the 24-h QPF forecasts for this case make sense physically
and participants found them useful.

d. 5-day ensemble clustering forecast output

Only the 5-day cluster forecasts for 24-h-averaged Z500 are
included for brevity. The 24-h-averaged Z500 multimodel en-
semble spread was lower for the 5-day forecast than the 7-day
forecast but it was still maximized over eastern Canada and
the northeastern United States. This indicates that these areas
were still where the forecast was most uncertain. In addition,
the 24-h-averaged Z500 EOFs for the 5-day forecast were
broadly similar to those of the 7-day forecast (Figs. 3c,d). This in-
dicates that the dominant modes of uncertainty had not changed.
Another reason we are not including the 24-h-averaged Z500
EOF and PC1–PC2 analysis for the 5-day forecast is that many
forecasters do not consult them. Personal communication with
forecasters who use the tool has revealed this. The authors main-
tain that useful information about the forecast can be gleaned
from consulting the 24-h-averaged Z500 EOF analysis and
accompanying PC1–PC2 phase space, it is not required to

effectively use the tool. To emphasize this, we have only in-
cluded the 24-h mean Z500 cluster and EPS mean forecasts,
which are shown in Fig. 8.

Figure 8a shows that the multimodel ensemble mean no
longer forecasts troughing over Atlantic Canada and the
northeastern United States and now forecasts weak ridging.
This is an improvement, but Fig. 8b shows that the degree of
ridging in this location is still underforecast by the multimodel
ensemble mean. The strength of the troughing extending
south from James Bay is also underforecast by the multimodel
mean. The 31 members that comprise cluster 1 (Fig. 8c) had
ridging over Ontario and troughing over Atlantic Canada,
resulting in a poor forecast. The 26 ensemble members that
comprise cluster 2 (Fig. 8d) had a trough from Atlantic Canada,
extending southwestward over the Atlantic coast of the United
States. This was also a poor forecast. The 23 members that
comprised cluster 3 (Fig. 8e) had troughing over Ontario and
extending southward over the central United States. Cluster 3
also had ridging over the eastern United States and eastern
Canada. This was a successful forecast. Finally, the 20 members
that comprise cluster 4 (Fig. 8f) had troughing over the central
United States and ridging over Ontario and eastern North
America. However, this ridging did not extend further eastward
to Atlantic Canada as the verification shows to have occurred.
Overall, the three EPS mean forecasts (Figs. 8g–i) are not as
different from the multimodel mean forecast as the four
ensemble cluster mean forecasts are from the multimodel
mean. This indicates that the cluster forecasts identified by
WPC’s EFC tool again did a better job than the EPS mean
forecasts of showing forecasters the range of possible forecast
solutions contained in the multimodel ensemble.

4. Limited statistical verification

The preceding case study demonstrates how the WPC EFC
tool can be a more instructive method for forecasters to incor-
porate ensemble forecast information than the traditional
method of viewing each EPS mean. However, this is just one
case study, and more rigorous verification over an extended
period is required to ascertain whether the WPC EFC tool
routinely provides a better assessment of the range of possible
forecast outcomes.

It is well established that individual ensemble members can
outperform the ensemble mean for individual cases (e.g.,
Palmer et al. 1990), but do not outperform the ensemble mean
for a large collection of cases (Toth and Kalnay 1993). Brill
et al. (2015) performed statistical verification on 8 months’
worth of cases for their clustering method. Their analysis com-
pared the accuracy of the forecasts from the two largest clus-
ters to the accuracy of forecasts from the deterministic GFS
and ECMWF, as well as the GEFS and ECMWF ENS means.
Brill et al. (2015) found that the two largest clusters did not
outperform the ECMWF ENS mean over their large sample
of cases. It is important to note that the clustering method of
Brill et al. (2015) tended to produce clusters that were com-
prised of a small number of members (typically between 4 and
13 members). The largest clusters produced by their clustering
methodology are smaller than the smallest clusters produced

TABLE 2. The 24-h-averaged Z500 centered anomaly correlation
over the EAST domain for the ensemble forecasts initialized at
0000 UTC 8 Feb 2021 and valid at 0000 UTC 16 Feb 2021.

Forecast 24-h-averaged Z500 anomaly correlation

Multimodel mean 0.11
Cluster 1 20.07
Cluster 2 20.33
Cluster 3 0.82
Cluster 4 0.63
GEPS mean 20.34
GEFS mean 0.61
ENS mean 0.02
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by our methodology. Table 3 shows the median cluster size of
the largest through the smallest cluster produced by our clus-
tering method for days 3–7 over the 6 months spanning from
15 October 2020 to 15 April 2021. The results are pooled
over the four regions as each region had similar cluster sizes.
Table 3 shows that our ensemble clusters are larger and are
roughly comparable to the sizes of the three constituent
EPSs. If ensemble cluster accuracy is a function of cluster

size, as hypothesized by Brill et al. (2015), then our clusters
should compare favorably to the accuracy of the EPS means
over a large sample of cases.

Our statistical verification will mirror that of Brill et al.
(2015) with one key difference, we rank the ensemble cluster
means, EPS means, and deterministic forecasts for each case
and then perform verification on the ranked forecasts. This will
determine if the best-performing cluster mean outperforms the

FIG. 6. (a) Multimodel ensemble mean (contours) and spread (shading) for 24-h TMAX initialized at 0000 UTC 8 Feb 2021 and valid at
0000 UTC 16 Feb 2021. The numbers on top of each panel indicated how many ensemble members from each EPS are included in that
panel’s mean forecast, “C” before the number of CMCGEPS ensemble members, “G” before the number of GEFS members, “E” before
the number of ECWMF ENS members, and “T” before the total number of ensemble members. (b) ERA5 analysis of 24-h TMAX
(contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021. (c)–(i) Cluster or EPS
mean 24-h TMAX (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021.
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best-performing EPS mean or deterministic forecast over a
large collection of cases. We feel that performing the verifica-
tion in this manner will establish if the WPC EFC tool consis-
tently provides a more accurate solution than any of the
available EPS means or deterministic forecasts. For our verifica-
tion, verified EPS means include the CMC GEPS, NCEP
GEFS, and ECMWF ENS. Verified deterministic forecasts in-
clude the GFS and ECMWF. Our limited statistical verification

period spans 183 days (15 October 2020–15 April 2021) and
clusters were generated for the 0000 and 1200 UTC initiali-
zations on each day. This provides 366 sample forecasts
for each day in days 3–7 from which to draw statistical
conclusions.

Similar to Brill et al. (2015), we apply the resampling
method of Hamill (1999) to obtain the distribution of differ-
ences in performance metrics for pairs of forecast sources

FIG. 7. (a) Multimodel ensemble mean (contours) and spread (shading) of 24-h QPF initialized at 0000 UTC 8 Feb 2021 and valid at
0000 UTC 16 Feb 2021. The numbers on top of each panel indicated how many ensemble members from each EPS are included in that
panel’s mean forecast, “C” before the number of CMC GEPS ensemble members, “G” before the number of GEFS members, “E”
before the number of ECWMF ENS members, and “T” before the total number of ensemble members. (b) CCPA analysis of 24-h
QPF (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021. (c)–(i) Cluster or
EPS mean 24-h QPF (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021.
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(e.g., best-performing ensemble cluster versus best-performing
EPS mean). As in Brill et al. (2015), the error bars (barred line
segments) associated with histogram bars in our verification
(Figs. 9–12) show confidence intervals obtained from the dis-
tribution of paired differences for the forecast source repre-
sented by that histogram bar compared to the forecast source
of the first histogram bar (the best-performing ensemble clus-
ter forecast). All forecast sources are compared with this best-
performing ensemble cluster forecast. The vertical extent of
each error bar is determined by the level of the statistical sig-
nificance test (0.05) and depicts the 95% confidence interval

(ranging from the 2.5th percentile to the 97.5th percentile
value in the order statistics of resampled differences). Each er-
ror bar is plotted with the zero value of the distribution of ran-
domly resampled differences aligned with the value along the
ordinate of the performance metric of the best-performing en-
semble cluster forecast, a position consistent with the null hy-
pothesis of no difference. Therefore, an error bar partially
overlapping the color of the underlying histogram bar indicates
no statistically significant difference between that forecast
source and the best-performing ensemble cluster forecast.
An error bar completely overlapping a color bar or completely

FIG. 8. (a) Multimodel ensemble mean (contours) and spread (shading) for 24-h-averaged Z500 initialized at 0000 UTC 10 Feb 2021
and valid at 0000 UTC 16 Feb 2021. The numbers on top of each panel indicated how many ensemble members from each EPS are
included in that panel’s mean forecast, “C” before the number of CMC GEPS ensemble members, “G” before the number of GEFS
members, “E” before the number of ECWMF ENS members, and “T” before the total number of ensemble members. (b) GFS analysis
of 24-h-averaged Z500 (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC 16 Feb 2021.
(c)–(i) Cluster or EPS mean 24-h-averaged Z500 (contours) and difference from the multimodel ensemble mean (shading) valid at 0000 UTC
16 Feb 2021.
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clear of a color bar indicates a statistically significant differ-
ence. The number of samples used in the bootstrap resampling
is 5000.

The 24-h-averaged Z500 verification metric is the centered
AC described earlier. Accordingly, the “best cluster” is de-
fined as the cluster mean with the highest Z500 AC. The best
ensemble and best deterministic models are defined similarly.
Figure 9 shows results for the 24-h-averaged Z500 verification
over the EAST domain. The centered standardized anomaly
correlation is positively oriented, meaning higher values indi-
cate better performance. For days 3–7, the best-performing
ensemble cluster outperforms the best-performing EPS mean
forecast and the best-performing deterministic forecast and
these results are statistically significant. This result was consis-
tent for the three other domains for which cluster forecasts were
made available. The difference between the best-performing
cluster mean forecast and the best-performing EPS mean or de-
terministic forecast is small (though statistically significant) on
day 3. However, the difference grows to be more substantial by
days 6 and 7. These results show that our EFC tool often pro-
vides a more accurate 24-h-averaged Z500 forecast than any of
the available EPS means or deterministic forecasts for days 3–7,
with the utility of the WPC EFC tool increasing as forecast lead
time increases.

The other question that needs to be answered by our statisti-
cal verification is whether ensemble clusters derived from Z500
can provide accurate forecasts for the other variables of interest.
To determine this, the TMAX, TMIN, and QPF forecasts for

the clusters were verified similarly to the 24-h-averaged Z500
forecasts over the same 6-month period. For each initialization,
the TMAX, TMIN, and QPF forecasts from the ensemble clus-
ter with the best 24-h-averaged Z500 AC were compared
against the EPS mean forecast and deterministic forecast with
the best 24-h-averaged Z500 AC. The verification metric for
TMAX, TMIN, and QPF is the mean absolute error (MAE)
over the domain of interest (Table 1). The verifying dataset for
TMAX and TMIN is ECMWF’s ERA5 dataset (Hersbach et al.
2020). The verifying dataset for QPF is CCPA (Hou et al.
2014). This verification over the EAST domain for TMAX,
TMIN, and QPF is shown in Figs. 10–12, respectively.

For TMAX and TMIN (Figs. 10 and 11), the best-performing
ensemble cluster had a lower average MAE than the best-
performing EPS mean or deterministic forecast for every day
in days 3–7. This result was statistically significant at the 95%
level. As with the Z500 verification (Fig. 9), the difference be-
tween the average MAE of the best-performing cluster and
the best-performing ensemble mean or deterministic forecast
was small on day 3 but grew throughout the 3–7-day period.
This lends further credence to the assertion that the WPC
EFC tool provides the most value at the end of the 3–7-day pe-
riod. The TMAX and TMIN forecast results closely mirroring
those of 24-h-averaged Z500 lend support for choosing Z500 as
the variable to determine the clusters. For QPF, the verification
results were more mixed. The QPFMAE for the best-performing
cluster was lower than that of the best-performing EPS mean or
best perform deterministic model for every day of days 3–7;
however, the difference was small and not always statistically
significant at the 95% level. These results indicate that the

TABLE 3. Median size in number of constituent members for the four clusters for forecast days 3–7.

Forecast day Day 3 Day 4 Day 5 Day 6 Day 7

Median size of largest cluster 35 35 34 34 34
Median size of second largest cluster 28 28 27 27 27
Median size of third largest cluster 22 22 22 22 22
Median size of smallest cluster 15 15 16 16 16

FIG. 9. The 24-h-averaged Z500 centered anomaly correlations
as a function of forecast day (indicated along the abscissa) for the
EAST region. The color key for the histogram bars is given above
the graph. See text for interpretation of error bars. FIG. 10. As in Fig. 9, but for TMAX.
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WPC EFC tool provides less informative QPF scenarios than
it does TMAX and TMIN forecast scenarios. The verification
for TMAX, TMIN, and QPF presented here for the EAST re-
gion was also consistent across the other regions of the WPC
EFC tool (not shown).

Our verification results show that the best-performing en-
semble cluster typically outperforms the best-performing en-
semble mean. This result is at least partially due to an ensemble
mean’s tendency to destroy the structure and reduce the ampli-
tude and variability associated with partially predictable fea-
tures like the placement and amplitude of large-scale troughs
and ridges (Feng et al. 2020). Ensemble cluster means should
be less susceptible to this source of forecast degradation as they
are comprised of members with similar forecasts for large-scale
features. Another implication of this is that the probability of
one of the ensemble cluster forecasts outperforming all three
operational EPS mean forecasts increases as the number of
clusters increases. The verification shows that WPC’s EFC tool
and its four clusters are an improvement over using the three
operational EPS mean forecasts as de facto forecast scenarios.

But what is the ideal number of clusters? A larger number of
clusters could be beneficial, but there will be a point when the
number of clusters becomes too much for a forecaster to
quickly view, process, and incorporate into their forecast duties.
More work needs to be done to determine the ideal number of
clusters that will provide forecasters with a good approximation
of the range of possible forecast solutions, but not overwhelm
them with data.

5. Summary and conclusions

This study detailed an ensemble clustering tool recently de-
veloped at WPC to assist NWS forecasters in their preparation
of medium-range (3–7 day) forecasts. The clustering method
employed by this tool is a variation of fuzzy clustering. Four
clusters are generated from a 100-member multimodel ensem-
ble comprised of the CMCGEPS, NCEPGEFS, and ECMWF
ENS for each forecast day in days 3–7. These ensemble clus-
ters are generated from an EOF analysis of Z500 over one of
four predefined domains. For each day in days 3–7, forecasters
can view the cluster mean 24-h-averaged Z500 forecasts and
cluster mean forecasts for TMAX, TMIN, and 24-h QPF. The
WPC EFC tool was initially developed to help forecasters par-
ticipating in WPC’s ERFE. The tool was well received by
ERFE participants who felt the tool helped them to better in-
corporate ensemble forecasts into their forecast process. Since
its debut in WPC’s ERFE in 2017, WPC’s EFC tool has gained
greater adoption by forecasters throughout the NWS.

The 15 February 2021 case study demonstrates why forecast-
ers have found the tool valuable. The day-7 and day-5 forecasts
from the four ensemble clusters gave a better approximation of
the range of possible forecast outcomes than viewing the mean
of each EPS, which is how ensemble forecasts have typically
been incorporated into the forecast process. One cluster in par-
ticular outperformed the three available EPS means. To ascer-
tain whether the positive results of the 15 February 2021 case
study were typical or atypical for WPC’s EFC tool, a limited
statistical verification was conducted over a 6-month period
from 15 October 2020 to 15 April 2021. The limited statisti-
cal verification proved that the best-performing cluster
based on 24-h-averaged Z500 AC usually outperforms the
best-performing EPS mean or deterministic forecast for the
variables of 24-h-averaged Z500, TMAX, and TMIN. Re-
sults for 24-h QPF were more mixed, indicating that Z500 is
not necessarily the best variable for picking out precipita-
tion forecast scenarios.

One major drawback of the WPC EFC tool is that it relies on
coarse (0.58) resolution versions of the global ensembles. This
can preclude the tool’s utility in regions where fine-scale details
are important, like the high terrain of the western United States.
To alleviate this problem, we are actively working with the
NBM developers to gain access to the aforementioned postpro-
cessed version of each ensemble member’s forecast for incorpo-
ration into WPC’s EFC tool. This would allow WPC’s EFC tool
to fulfill our ultimate vision of becoming a true companion to
the NBM.

Work is also ongoing to improve the underlying clustering
methodology. As shown by the QPF verification, solely using

FIG. 11. As in Fig. 9, but for TMIN.

FIG. 12. As in Fig. 9, but for QPF.
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Z500 to generate the cluster forecasts does not always create
useful cluster forecasts for all variables of interest. We are in-
vestigating ways that variables in addition to Z500 can be in-
corporated into the cluster generation methodology. We are
also investigating whether a time component should be added
to the clustering methodology. One of the most frequent
criticisms from forecasters using the WPC EFC tool is that
the forecast scenarios it presents usually have no continuity
from day to day. This can lead to confusion when creating
forecasts for events spanning multiple days. We are also inves-
tigating how many clusters the WPC EFC tool should present
to forecasters. In its current configuration, the tool presents
four clusters. Allowing the tool to present more than four
clusters could be beneficial, but it will take collaboration with
NWS forecasters to determine the ideal number.
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